• OA系统
  • 图书馆
  • English
  • 中国科学院
  • 首页
  • 所况简介
    所况简介
    1964年,为落实国家声学规划,满足国家迫切需要,形成全国声学学科研究中心,经国务院副总理聂荣臻元帅批准,成立中国科学院声学研究所(以下简称声学所),将原中科院电子所的水声、超声、建筑声3个实验室,1958年成立的南海研究站、1960年成立的东海研究站、1961年成立的北海研究站整体纳入声学所。声学所是从事声学和信息处理技术研究的综...
    了解更多+
    现任领导
    李风华
    所长
    库卫群
    党委书记、副所长
    李明庚
    副所长(正局级)
    杨 军
    副所长
    杨 波
    副所长
    王 雷
    纪委书记
  • 机构设置
    领导机构
    所务会 党委会
    咨询机构
    学术委员会 学位评定委员会
    职能部门
    综合办公室 党委办公室 人力资源部 科技发展部 重大任务部 财务管理部 资产条件保障部 质量管理部 保密办公室 监督审计(纪委)办公室 造船办公室

    研究站
    南海研究站 东海研究站 北海研究站
    挂靠机构
    中国声学学会 全国声学标准化委员会 中国科学院声学计量站(CMA)
    研究单元
    声场声信息实验室
    水下环境信息感知实验室
    水下信息技术实验室
    海洋声学技术实验室
    水下航行器实验室
    超声学实验室
    噪声与音频声学实验室
    智能网络与信息处理技术实验室
    语音与智能信息处理实验室
    无人信息系统研究中心
  • 科研成果
    研究领域
    经过五十多年的发展,声学所形成了独具特色的六大研究领域:水声物理与水声探测技术、环境声学与噪声控制技术、超声学与声学微机电技术、通信声学和语言语音信息处理技术、声学与数字系统集成技术、高性能网络与网络新媒体技术。 【详情】
    成果概况
    获奖
    论文
    专利
    专著
    科研进展
    研究人员提出一种基于声阻抗效应的声表面波气体传感新方法
    2025-02-14
    声学所极地声学研究取得突破性进展
    2025-01-23
    研究人员在蜂窝结构中发现反常声传播特征并展示其在脱粘缺陷检测中的潜力
    2025-01-16
    声学所论文被评选为“2024年度中国高影响力数据论文”
    2024-12-11
    声学所王文团队论文获得Nature子刊2024年度热点论文奖
    2024-10-21
    中国科学院声学研究所语音与智能信息处理实验室团队在EUSIPCO 2024 LAP Challenge中夺冠
    2024-09-12
    研究人员提出面向网络加速的FPGA动态部分可重构方法
    2024-09-03
    研究人员提出逐符号运动补偿的256QAM水声通信方案
    2024-08-16
    研究人员提出基于深度学习的地层横波速度层析成像新方法
    2024-07-23
    研究人员利用零群速度特征提出一种复合蜂窝结构脱粘缺陷检测新方法
    2024-07-02
    研究人员提出适用于MIMO系统的目标检测与位置估计方法
    2024-06-03
  • 人才队伍
    院士专家
    汪德昭
    马大猷
    应崇福
    张仁和
    侯朝焕
    李启虎
    汪承灏
    人才招聘
    更多+
    中国科学院声学研究所2025年特别研究助理(博士后)招聘启事
    2025-04-03
    中国科学院声学研究所2025年招聘启事
    2025-04-03
    中国科学院声学研究所资产条件保障部岗位招聘启事
    2025-03-18
    中国科学院声学研究所诚邀优秀青年人才申报2025年度海外优青项目
    2025-03-03
    中国科学院声学研究所监督审计(纪委)办公室管理岗位招聘启事
    2025-03-03
    正高级专业技术岗位
    副高级专业技术岗位
    中科院青年创新促进会会员
    特别研究助理及博士后管理
  • 研究生教育
  • 党建与文化
    活动报道
    更多+
    声学所党委举办深入贯彻中央八项规定精神学习教育读书班暨理论学习中心组集体学习会
    2025-06-04
    声学所开展弘扬科学家精神专题培训
    2025-05-23
    重温红色历史 铸就奋进初心——记中国科学院声学研究所离退休党员参观党史馆
    2025-05-21
    语音与智能信息处理党总支开展“严明岗位工作纪律”主题党日
    2025-05-21
    水下环境信息感知党支部举办“传承与拼搏”系列微党课活动(十)
    2025-05-19
  • 交流合作
    学术交流
    更多+
    声学所特别研究助理小组举办2025年度第2期学术交流活动
    2025-05-26
    声学所举行2025年第6期学术交流会
    2025-05-26
    声学所举行2025年第5期学术交流会
    2025-04-15
    声学所举行2025年第4期学术交流会
    2025-04-15
    声学所举行2025年第3期学术交流会
    2025-04-02
    科技合作
    更多+
    科技导报社调研声学所
    2025-03-10
    青岛市人大代表慈国庆参加市人大代表座谈会
    2024-03-27
    青岛高新区工委委员、管委副主任张建军调研北海研究站
    2023-12-04
    超快速高灵敏声表面波氢气传感器入选中国科协科研仪器优秀案例
    2023-03-28
    科技部社会发展科技司调研声学研究所相关工作
    2023-03-23
    国际会议
    更多+
  • 科学传播
    工作动态
    更多+
    科学之"声" 启迪未来——中国科学院声学研究所成功举办第二十一届公众科学日活动
    2025-05-20
    我们的耳朵——中国科学院青促会北京分会 “爱科学小课堂”第 23期科普活动在声学所举行
    2024-09-10
    北京市中关村中学走进北海站开展科学实践活动
    2024-07-15
    《中国医学影像技术》5T专刊在京发布 国内首次系统性地在学术期刊上介绍和展示世界首创的超高场5T磁共振技术
    2024-06-28
    声学所作品获评2023年度全国优秀科普微视频
    2024-04-01
    科技期刊
    科普文章
    更多+
    科普文章丨耳机里的声音为什么会有方向感?
    科普文章丨嘿,siri!嘈杂的酒吧里,AI为什么听不懂指令?
    科普文章丨神奇的主动降噪技术
    科普视频
    更多+
    科普视频丨杨波:揭秘“深海勇士号”载人潜水器
    科普视频丨声音的奥秘
    科普视频丨真空无法传声科普实验
    科普视频丨借声波一臂之力探神秘海底世界
  • 信息公开
    信息公开规定
    信息公开指南
    信息公开目录
    信息公开申请
    信息公开年度报告
    信息公开联系方式
  • 首页
  • 所况简介
    • 机构简介
    • 所长致辞
    • 现任领导
    • 历任主要领导
      • 历任所长
      • 历任党委书记
    • 院所风貌
  • 机构设置
    • 党的委员会
    • 学术委员会
    • 学位评定委员会
    • 组织机构
      • 领导机构
      • 咨询机构
      • 研究平台
        • 研究单元
        • 重点实验室(工程中心)
      • 职能部门
      • 研究站
      • 挂靠机构
  • 科研成果
    • 研究领域
    • 科研进展
    • 科研产出
      • 获奖
      • 论文
      • 专著
      • 专利
  • 人才队伍
    • 院士专家
    • 正高级专业技术岗位
    • 副高级专业技术岗位
    • 中科院青年创新促进会会员
      • 2011
      • 2012
      • 2013
      • 2014
      • 2015
      • 2016
      • 2017
      • 2018
      • 2019
      • 2020
      • 2021
    • 特别研究助理及博士后管理
      • 博士后公告
      • 博士后规章
    • 人才招聘
  • 交流合作
    • 学术交流
    • 国际会议
    • 科技合作
      • 合作动态
      • 专利转让信息
      • 合作项目
  • 研究生教育
  • 党建与文化
    • 党群园地
    • 组织文化
    • 形象标识
    • 活动报道
    • 文化副刊
      • 诗歌
      • 书画
      • 摄影
      • 散文
  • 科学传播
    • 时间轴
    • 工作动态
    • 科普作品
      • 科普文章
      • 科普视频
      • 其他
    • 科技期刊
  • 信息公开
    • 信息公开规定
    • 信息公开指南
    • 信息公开目录
    • 信息公开申请
    • 信息公开年度报告
    • 信息公开联系方式
  • 重要新闻
  • 党建动态
  • 综合新闻
  • 媒体报道
  • 学术报告
  • 通知公告
  • 最美科学家
  • 专题
  • 专题
    • 深切缅怀汪承灏院士
      • 讣告
      • 汪承灏院士治丧委员会
      • 生平传记
      • 追忆悼念
      • 科研成果
      • 科学家精神
      • 音容笑貌
    • 深入贯彻八项
    • 2025年全国两会
    • 学习贯彻党的二十届三中全会
    • 科技自立自强之路
    • 科学家精神教育基地
    • 2024年全国两会
    • 平语近人(第3季)
    • 中国科学院2024年度工作会议
    • 科技创新再出发
    • 学习贯彻习近平新时代中国特色社会主义思想主题教育
    • 学习两会精神
    • 学习宣传贯彻党的二十大精神
    • 中国科学院2022年度工作会
    • 2021年终科技盘点
    • 中国科学院“基础研究十条”
    • 十九届六中全会
    • 党史学习教育
    • 不忘初心牢记使命
    • 率先行动
    • 两学一做
    • 防灾减灾
    • 十八届四中全会
    • 喜迎十八大
    • 十九届五中全会
  • 快捷通道
    • OA系统
    • 继续教育网
    • ARP
    • 违法违纪举报
    • 信访渠道
    • 图书馆
    • 正版软件
    • 网站地图
  • 友情链接
    • 新闻媒体
    • 政府机构和组织
    • 国内院校
    • 国内科研机构
    • 国际科研机构
  • 网站纠错
媒体报道
您当前的位置:
首页 媒体报道

氢能利用再添“安全卫士”新型传感器实现氢气秒级响应

发布时间:2022-02-24 作者:实习记者 孙瑜
【  小 中 大  】

  声表面波氢气传感器的技术优势在于快速响应与高灵敏度。声表面波技术本身对表面负载表现出极高的灵敏度和快速响应特点。将之与特异选择性的氢敏材料相结合,利用传感过程中的气体吸附效应对声表面波传播的作用,即可实现对氢气的快速高灵敏检测。

  氢气作为一种清洁能源,在促进节能减排、调整能源产业结构、应对全球气候变化等方面具有广阔应用前景。

  然而,使用氢气存在一个“痛点”。氢气本身具有易燃易爆、无色无味的性质,这使得氢气在泄漏时难以被察觉,累积后极易产生安全事故。更好地开发利用氢能,快速、高灵敏的氢气传感技术必不可少。

  近日,传感器领域的重要期刊《Sensors and Actuators B:Chemical》上线了一篇重要论文,展现了氢气传感技术的新进展。中国科学院声学研究所超声学实验室研究员王文带领课题组在前期工作基础上,与南开大学教授杨大驰团队合作,将微纳声表面波器件技术与钯镍纳米线氢敏材料相结合,提出并研制了一种具有秒级响应、高灵敏和低检测限的新型声表面波氢气传感器。

  目前氢传感技术难以满足实用需求

  2019年仲夏之际,全球在20天内发生了3次氢气相关的爆炸事件。韩国一个氢燃料储存罐发生爆炸事故;美国一处化工厂储氢罐和氢气运输拖车发生爆炸和火灾;挪威首都奥斯陆郊外的一处加氢站发生爆炸。

  如何安全利用氢气这一绿色清洁能源,成为人们关注的焦点。

  王文告诉科技日报记者:“氢气易燃易爆。在空气中氢气浓度在4%—75%范围内极易发生爆炸,由氢气泄漏导致的安全事故时有发生。因此,使用氢能时必须进行实时监测,氢气传感器也就成为氢能应用中必不可少的关键部件。”

  目前,典型氢气传感技术运用了催化、热导、电化学、电阻式及光学等方法。王文介绍道,这几种方法各有优缺点。

  催化法传感器可稳定并快速检测浓度在4%以内的氢气,但对可燃性气体的选择性较差,易受抑制剂影响,且需较高的工作温度,难以满足氢能应用领域极高的安全与可靠性要求。

  热导式传感器可在大范围内实现较为快速(约在20秒内)的氢气传感,但传感精度不高,对高热导率气体,例如氦、甲烷、一氧化碳等气体,会造成交叉敏感,也难以实现对1%以下浓度氢气的检测。

  电化学传感器可以在常温下工作,且灵敏度较高,但响应速度较慢(约在70秒内),使用寿命也较短。而电阻式传感器虽然能实现秒级快速氢传感,但一般需高温工作环境(300摄氏度至800摄氏度),且选择性差、易中毒。

  光学传感器的优势在于传感器件抗电磁干扰强,较安全,且灵敏度和测量精度高,能够达到实时响应。但是传感器体积较大,整体系统复杂且成本较高。

  美国能源部2007年便制定了汽车以及固定式电力系统中氢气检测的性能指导要求。其中,最为关键的一条指明了对氢气传感器的性能要求——响应速度与恢复速度期望在1秒内,量程要求在0.1—10vol%。而现有的氢气传感器难以达到该要求。

  “目前,氢传感技术在响应速度、使用量程及安全性等方面均难以满足氢泄漏监测的实用需求,新的氢传感技术与方法亟待发展。”王文说。

  打造快速响应与高灵敏度的新型传感器

  实际上,声波气敏技术作为声学领域的重要发展方向,王文和同事们对其前沿动态一点也不陌生。他和同事们一直深耕于此,在特异性气敏材料响应机制、多效应耦合的声表面波气敏效应及高性能声表面波气敏元件优化等方面的研究取得重要进展。

  为了满足氢能发展的实用需求,研发更灵敏的氢气传感器,王文及其课题组加快了攻关步伐。他们找到了在氢敏材料方面有着较为深入研究的南开大学杨大驰教授的团队。

  双方一拍即合。“自2016年起,我们就开始和杨大驰教授的团队合作,开展新型声表面波氢气传感器研究。”王文表示,中国科学院声学所的声表面波技术研究在国内处于优势地位,南开大学则在氢敏材料研究方面有多年积累。双方期望通过将声表面波器件技术与钯基纳米材料(一种氢敏材料)结合,探索出快速氢传感新方法,以解决现有氢传感技术所面临的技术难题。

  “声表面波氢气传感器的技术优势在于快速响应与高灵敏度。”王文解释道,声表面波技术本身对表面负载表现出极高的灵敏度和快速响应特点,将之与特异选择性的氢敏材料相结合,利用传感过程中的气体吸附效应对声表面波传播的作用,即可实现对氢气的快速高灵敏检测。

  “此外,声表面波氢气传感器还具备良好的重复性与选择性,以及小体积、低成本的技术特点。”王文说。

  尽管思路和目标十分清晰,在研究过程中,王文及其课题组还是遇到了难题。“我们面临两个技术难点,一个是钯基氢敏材料的响应机制及设计方法,另一个是高性能的声表面波氢敏元件设计与制备。”

  王文告诉记者,他们通过讨论和各种实验,解决了难题。例如,通过探索钯基材料及纳米调控机制,确定了纳米线制备方法;建立分析方法,对传感器功能结构进行优化。

  团队最终成功研制出新型声表面波氢气传感器样机。

  王文高兴地表示:“样机测试结果很好,验证了最初的设计思想。新型声表面波氢气传感器实现了对氢气检测的快速响应、高灵敏度及低检测限。”

  在氢能领域应用前景广泛

  作为一种新兴能源载体和化工原料,氢气具有来源广泛、清洁环保、可循环利用等一系列优点,与太阳能、风能等被称为九大新能源,并被誉为最具发展前景的二次能源。

  据不完全统计,截至目前,已有北京、河北、四川、山东等超过30个地方陆续出台了涉及氢能产业发展的政策及相关规划。根据《北京市氢能产业发展实施方案(2021—2025年)》,2025年前,京津冀区域累计实现氢能产业链产业规模1000亿元以上,减少碳排放200万吨。

  “氢能在电子工业、汽车业、冶金工业、石油化工、浮法玻璃、精细有机合成、航空航天、食品加工等方面都有广泛应用,作为一种绿色能源,它的应用程度在不断深化。未来,氢气传感器的市场需求也将急剧增加。”王文说。

  近年来,氢气传感器得到了飞速发展,涌现了诸多如电化学、电学式及光学式等不同技术原理的商用氢气传感器。各国科研院所持续投入力量开展氢气传感的新原理新技术研究,以期满足实际应用的需求。

  “声表面波氢气传感器引起了很多科研人员的兴趣。”王文表示,不少研究聚焦氢敏材料设计,取得了不错的试验效果。

  “但迄今为止,因为氢敏材料存在稳定性与可靠性方面的技术难题,还没有出现商业化的声表面波氢气传感器。”王文说。

  不过,随着碳达峰碳中和工作深入推进,未来,高灵敏氢气传感器将“大显身手”。

  王文对新型声表面波氢气传感器的应用前景很有信心。“鉴于声表面波氢气传感器具备现有技术难以比拟的快速、高灵敏、低功耗、小体积与低成本等特点,一旦完成工程化,在氢能领域极具应用前景。”

  作者:《科技日报》 实习记者 孙瑜

  来源:《中国科学报》 (2022-2-23 第5版 成果)

  报道链接:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2022-02/23/content_530728.htm?div=-1


附件下载:

上一篇:

《中国科学报》他不是个好好先生

下一篇:

生逢其时,使命光荣,责任重大|中科院职工学生热议党的二十大报告

新闻媒体
  • 新闻媒体
  • 人民网
  • 新华网
  • 光明网
  • 央视网
  • 中国科技网
  • 科学网
政府机构和组织
  • 政府机构和组织
  • 中国政府网
  • 科技部
  • 财政部
  • 工业和信息化部
  • 国家自然科学基金委
  • 国家发展改革委
  • 中国科协
国内院校
  • 国内院校
  • 中国科学院大学
  • 中国科学技术大学
  • 哈尔滨工程大学
  • 南京大学
国内科研机构
  • 国内科研机构
  • 中船重工
  • 地科院
  • 医科院
  • 铁科院
国际科研机构
  • 国际科研机构
  • 美国声学学会
  • Scripps海洋研究所
  • 哥本哈根大学
  • 勒芒大学
旧版回顾 | 网站地图 | 联系我们
© 1996 - 2021 中国科学院声学研究所 版权所有备案序号:京ICP备16057196号-1
京公网安备110402500001号地址:北京市海淀区北四环西路21号中国科学院声学研究所
邮编:100190
官方微信