• OA系统
  • 图书馆
  • English
  • 中国科学院
  • 首页
  • 所况简介
    所况简介
    1964年,为落实国家声学规划,满足国家迫切需要,形成全国声学学科研究中心,经国务院副总理聂荣臻元帅批准,成立中国科学院声学研究所(以下简称声学所),将原中科院电子所的水声、超声、建筑声3个实验室,1958年成立的南海研究站、1960年成立的东海研究站、1961年成立的北海研究站整体纳入声学所。声学所是从事声学和信息处理技术研究的综...
    了解更多+
    现任领导
    李风华
    所长
    库卫群
    党委书记、副所长
    李明庚
    副所长(正局级)
    杨 军
    副所长
    杨 波
    副所长
    王 雷
    纪委书记
  • 机构设置
    领导机构
    所务会 党委会
    咨询机构
    学术委员会 学位评定委员会
    职能部门
    综合办公室 党委办公室 人力资源部 科技发展部 重大任务部 财务管理部 资产条件保障部 质量管理部 保密办公室 监督审计(纪委)办公室 造船办公室

    研究站
    南海研究站 东海研究站 北海研究站
    挂靠机构
    中国声学学会 全国声学标准化委员会 中国科学院声学计量站(CMA)
    研究单元
    声场声信息实验室
    水下环境信息感知实验室
    水下信息技术实验室
    海洋声学技术实验室
    水下航行器实验室
    超声学实验室
    噪声与音频声学实验室
    智能网络与信息处理技术实验室
    语音与智能信息处理实验室
    无人信息系统研究中心
  • 科研成果
    研究领域
    经过五十多年的发展,声学所形成了独具特色的六大研究领域:水声物理与水声探测技术、环境声学与噪声控制技术、超声学与声学微机电技术、通信声学和语言语音信息处理技术、声学与数字系统集成技术、高性能网络与网络新媒体技术。 【详情】
    成果概况
    获奖
    论文
    专利
    专著
    科研进展
    研究人员提出一种基于声阻抗效应的声表面波气体传感新方法
    2025-02-14
    声学所极地声学研究取得突破性进展
    2025-01-23
    研究人员在蜂窝结构中发现反常声传播特征并展示其在脱粘缺陷检测中的潜力
    2025-01-16
    声学所论文被评选为“2024年度中国高影响力数据论文”
    2024-12-11
    声学所王文团队论文获得Nature子刊2024年度热点论文奖
    2024-10-21
    中国科学院声学研究所语音与智能信息处理实验室团队在EUSIPCO 2024 LAP Challenge中夺冠
    2024-09-12
    研究人员提出面向网络加速的FPGA动态部分可重构方法
    2024-09-03
    研究人员提出逐符号运动补偿的256QAM水声通信方案
    2024-08-16
    研究人员提出基于深度学习的地层横波速度层析成像新方法
    2024-07-23
    研究人员利用零群速度特征提出一种复合蜂窝结构脱粘缺陷检测新方法
    2024-07-02
    研究人员提出适用于MIMO系统的目标检测与位置估计方法
    2024-06-03
  • 人才队伍
    院士专家
    汪德昭
    马大猷
    应崇福
    张仁和
    侯朝焕
    李启虎
    汪承灏
    人才招聘
    更多+
    中国科学院声学研究所2025年特别研究助理(博士后)招聘启事
    2025-04-03
    中国科学院声学研究所2025年招聘启事
    2025-04-03
    中国科学院声学研究所资产条件保障部岗位招聘启事
    2025-03-18
    中国科学院声学研究所诚邀优秀青年人才申报2025年度海外优青项目
    2025-03-03
    中国科学院声学研究所监督审计(纪委)办公室管理岗位招聘启事
    2025-03-03
    正高级专业技术岗位
    副高级专业技术岗位
    中科院青年创新促进会会员
    特别研究助理及博士后管理
  • 研究生教育
  • 党建与文化
    活动报道
    更多+
    超声学党总支召开党员大会
    2025-06-18
    语音与智能信息处理党总支召开“筑防线、树新风”微党课
    2025-06-18
    水下航行器党总支第一党支部召开党员大会
    2025-06-18
    语音与智能信息处理党总支召开党员大会
    2025-06-18
    声学所党委举办深入贯彻中央八项规定精神学习教育读书班暨理论学习中心组集体学习会
    2025-06-04
  • 交流合作
    学术交流
    更多+
    声学所特别研究助理小组举办2025年度第2期学术交流活动
    2025-05-26
    声学所举行2025年第6期学术交流会
    2025-05-26
    声学所举行2025年第5期学术交流会
    2025-04-15
    声学所举行2025年第4期学术交流会
    2025-04-15
    声学所举行2025年第3期学术交流会
    2025-04-02
    科技合作
    更多+
    科技导报社调研声学所
    2025-03-10
    青岛市人大代表慈国庆参加市人大代表座谈会
    2024-03-27
    青岛高新区工委委员、管委副主任张建军调研北海研究站
    2023-12-04
    超快速高灵敏声表面波氢气传感器入选中国科协科研仪器优秀案例
    2023-03-28
    科技部社会发展科技司调研声学研究所相关工作
    2023-03-23
    国际会议
    更多+
  • 科学传播
    工作动态
    更多+
    科学之"声" 启迪未来——中国科学院声学研究所成功举办第二十一届公众科学日活动
    2025-05-20
    我们的耳朵——中国科学院青促会北京分会 “爱科学小课堂”第 23期科普活动在声学所举行
    2024-09-10
    北京市中关村中学走进北海站开展科学实践活动
    2024-07-15
    《中国医学影像技术》5T专刊在京发布 国内首次系统性地在学术期刊上介绍和展示世界首创的超高场5T磁共振技术
    2024-06-28
    声学所作品获评2023年度全国优秀科普微视频
    2024-04-01
    科技期刊
    科普文章
    更多+
    科普文章丨耳机里的声音为什么会有方向感?
    科普文章丨嘿,siri!嘈杂的酒吧里,AI为什么听不懂指令?
    科普文章丨神奇的主动降噪技术
    科普视频
    更多+
    科普视频丨杨波:揭秘“深海勇士号”载人潜水器
    科普视频丨声音的奥秘
    科普视频丨真空无法传声科普实验
    科普视频丨借声波一臂之力探神秘海底世界
  • 信息公开
    信息公开规定
    信息公开指南
    信息公开目录
    信息公开申请
    信息公开年度报告
    信息公开联系方式
  • 首页
  • 所况简介
    • 机构简介
    • 所长致辞
    • 现任领导
    • 历任主要领导
      • 历任所长
      • 历任党委书记
    • 院所风貌
  • 机构设置
    • 党的委员会
    • 学术委员会
    • 学位评定委员会
    • 组织机构
      • 领导机构
      • 咨询机构
      • 研究平台
        • 研究单元
        • 重点实验室(工程中心)
      • 职能部门
      • 研究站
      • 挂靠机构
  • 科研成果
    • 研究领域
    • 科研进展
    • 科研产出
      • 获奖
      • 论文
      • 专著
      • 专利
  • 人才队伍
    • 院士专家
    • 正高级专业技术岗位
    • 副高级专业技术岗位
    • 中科院青年创新促进会会员
      • 2011
      • 2012
      • 2013
      • 2014
      • 2015
      • 2016
      • 2017
      • 2018
      • 2019
      • 2020
      • 2021
    • 特别研究助理及博士后管理
      • 博士后公告
      • 博士后规章
    • 人才招聘
  • 交流合作
    • 学术交流
    • 国际会议
    • 科技合作
      • 合作动态
      • 专利转让信息
      • 合作项目
  • 研究生教育
  • 党建与文化
    • 党群园地
    • 组织文化
    • 形象标识
    • 活动报道
    • 文化副刊
      • 诗歌
      • 书画
      • 摄影
      • 散文
  • 科学传播
    • 时间轴
    • 工作动态
    • 科普作品
      • 科普文章
      • 科普视频
      • 其他
    • 科技期刊
  • 信息公开
    • 信息公开规定
    • 信息公开指南
    • 信息公开目录
    • 信息公开申请
    • 信息公开年度报告
    • 信息公开联系方式
  • 重要新闻
  • 党建动态
  • 综合新闻
  • 媒体报道
  • 学术报告
  • 通知公告
  • 最美科学家
  • 专题
  • 专题
    • 深入贯彻八项
    • 2025年全国两会
    • 学习贯彻党的二十届三中全会
    • 科技自立自强之路
    • 科学家精神教育基地
    • 2024年全国两会
    • 平语近人(第3季)
    • 中国科学院2024年度工作会议
    • 科技创新再出发
    • 学习贯彻习近平新时代中国特色社会主义思想主题教育
    • 学习两会精神
    • 学习宣传贯彻党的二十大精神
    • 中国科学院2022年度工作会
    • 2021年终科技盘点
    • 中国科学院“基础研究十条”
    • 十九届六中全会
    • 党史学习教育
    • 不忘初心牢记使命
    • 率先行动
    • 两学一做
    • 防灾减灾
    • 十八届四中全会
    • 喜迎十八大
    • 十九届五中全会
    • 深切缅怀汪承灏院士
      • 讣告
      • 汪承灏院士治丧委员会
      • 生平传记
      • 追忆悼念
      • 科研成果
      • 科学家精神
      • 音容笑貌
  • 快捷通道
    • OA系统
    • 继续教育网
    • ARP
    • 违法违纪举报
    • 信访渠道
    • 图书馆
    • 正版软件
    • 网站地图
  • 友情链接
    • 新闻媒体
    • 政府机构和组织
    • 国内院校
    • 国内科研机构
    • 国际科研机构
  • 网站纠错
科普作品
科普文章
科普视频
其他
科普文章
您当前的位置:
首页 科学传播 科普作品 科普文章

科普文章丨给我一点超材料 还你一件隐身衣

发布时间:2018-07-24 作者:中科院噪声与振动重点实验室 毕亚峰
【  小 中 大  】

  “大爷穿上国产隐身衣,凭空消失!”前段时间,这个视频在网上超火的~

  

  不过!如果大家认为披上一件薄薄的外套,就能让整个人变得透明,甚至消失得无影无踪,那么不好意思让你失望了,我们的材料科学目前还没发展到这个阶段。所以“网红”隐身衣之类的“神器”,都是移花接木的电影特效,电影特效,电影特效!

  

  虽然“网红”隐身衣是假的,但“隐身”可是切切实实存在的科技!

  

  浙江大学陈红胜教授课题组在水缸里放了个六边形的隐身块(下图左),它蓝白相间,中心有一个小孔,当金鱼游进小孔后,相机只能拍到隐身块后方的水草,而金鱼却从画面中消失了(下图右)。

  

  左:水缸里的隐身块;右:相机拍摄画面

  这是一项很有意思的研究啊!广大男同胞们可以用它来藏私房钱(嘿嘿)。

  

  我们不禁想问,这样的隐身技术是什么原理呢???

  这还得从人为什么能看到鱼说起。

  光线照在鱼身上后,会产生各种各样的散射,这些散射波传到我们的眼睛,就形成了我们所看见的小鱼的模样。既然如此,如果我们能控制光线从小鱼身边绕过去,那么就没有光的散射,小鱼也就会“看起来”消失不见!

  

  隐身原理示意图

  问题又来了,水缸里的隐身块是怎么实现隐身效果的呢?

  下图是光线在水缸里的传播路径,其中红色的线代表水草方向传来的光波,光线在传播过程中绕开了中间的小孔区域(即隐身区域),传到右侧的相机中。中间的小孔并不会遮挡水草散射出来的光线,所以我们仍然能够看到隐身衣后方的水草;由于光波绕过了藏匿在小孔中的金鱼,所以金鱼就消失不见了。

  

  水缸隐身块原理示意图

  

  众所周知,光波是一种电磁波,它在空气中衰减很小,传播很远后仍然可以被检测到,所以我们看得见远方的物体;在海水中光波则衰减很大,传播一小段距离后就微弱到可以忽略不计,所以深海之中一片漆黑。据此,我们往往使用声波代替电磁波来探测水下目标。

  声波探测的道理与光波相同,声纳发出的声波遇到目标后也会产生散射,此时声纳接收到散射波信号,就发现了目标物体(下图)。

  

  单个声纳进行探测

  以往人们通过吸收声波来躲避声纳的探测,将探测发出的声波能量尽可能地“吃掉”,散射回波就会大幅减小。在单个收发合置的声纳(既负责发射探测声波,又负责接收散射回波)探测的情景中,这种方法是有效的,没有散射回波,探测声纳就认为没有物体存在。

  

  但是,如果海洋中到处都布满了声纳,声纳之间互相接收信号,此时继续使吸收声波,会造成原本应该存在的探测信号突然消失,就好比在你的眼睛和灯光之间放上一块吸光的黑布,出现明显的遮挡,这块布就露馅了。就如下图的情况,当目标物出现时,虽然左侧的声纳没有收到回波,显示正常,但右侧的声纳却会发现,咦?怎么声波被挡住啦?马上发出警告!

  

  多个声纳进行探测

  这时,你需要新型的隐身衣!从一侧声纳发出的声波,经过隐身衣绕过目标,传到另一侧的声纳,在众多声纳眼中,目标物体就像前文的金鱼一样消失了,既没有回波,也没有遮挡,布放再多的声纳也无济于事。

  

  (gif动图演示)使目标透明的隐身衣:覆盖隐身衣后的目标基本没有散射回波,而且不存在声波的阴影区,仿佛从声场中“隐身”。

  那么如何实现声波的操控并做出隐身衣呢?

  

  如何实现声波的操控?这是众多科学家前赴后继研究的问题。

  声波的传播需要介质,而介质直接决定了声波的传播速度、折射方向等特性。于是,声波的传播介质成为了科学家的关注点。随着人们对声学、力学的认识逐步加深,一种叫做超材料的人工复合结构/材料进入科学家的视线。

  什么是超材料?

  当我们把介质里很微小的人工结构(远远小于波长)进行有序排列后,就可以改变介质的宏观性质。这些经过人工排序的微结构组成的介质,就叫做超材料。

  

  基于这种理论,具有“隐身”功能的新型声学器件开始出现。

  比如声波偏转器:将一系列特定的微结构排列成扇形(图中的黑线),可以获得改变声波传播方向的超能力。当声波从左向右发射进入扇形结构后,前进方向会逐渐发生偏转,最终转向90度,变成了向上传播。

  

  超材料控制下,声波会偏转90°

  这里的微结构是什么?细细观察图中的一小段黑线,可以看到,微结构是一系列从左往右逐渐变大的小孔。声波穿过这些小孔时,孔小的地方声速要慢一些,孔大的地方声速要快一些。就像一排小朋友在操场跑步,过弯道的时候,外面的人要跑快点,里面的人可以跑慢些,那么大家就能整齐划一地保持同步转弯。转过90度后,声波跑出了偏转器,大家又以相同的速度朝前跑啦。

  

  声波偏转器的内部细微结构

  利用超材料控制声波的传播方向,我们就可以人为控制声波散射,比如把声波引到一些本不该有声波的地方,也可以反过来,把原本到处都是声波的地方擦得干干净净。

  超材料就像一支画笔,赋予了我们修改“声场”这块画布的能力。涂涂抹抹,可以把一条金鱼变得透明;修修改改,似乎还能把金鱼画成海底;再缝缝补补,好像还能把金鱼变鲸鱼。

  

  是的,你没看错,金鱼在声纳眼中长什么样,只与它对声波的散射有关。

  现在可以大变金鱼魔术啦!!!你以为前方是空无一物的水域,其实隐身衣中藏着金鱼。你以为这里是浮着水草的海底,其实隐身毯下也躲着金鱼。你以为这是一条大鲸鱼,其实幻象之下,它还是一条小金鱼。

  

  利用超材料,我国的科学家们已经做出了不少隐身神器!

  1.隐身毯

  中科院声学所的杨军研究员团队就做出了一种“魔术”隐身毯。研究人员使用超材料修改了目标的散射波,让它拟态变成了海底,率先在水下实现了物体的声学隐身。

  不明觉厉?我们还是直接看图说话吧。

  

  水下隐身毯模型

  隐身毯由一层一层互相分隔的黄铜板组成,毯下有一个梯形的小空间,需要隐藏的目标物体就放在这个区域。覆盖在目标物体上的隐身毯,可以对周围的声波进行引导,使原本凸起的目标物体显示出平面的回波效果。敲黑板,最终效果就是:原本凸起的物体在外界看来就是一块平地。

  声波遇到隐身毯,可真是一点办法也没有……

  

  利用隐身毯实现拟态

  a:一束声波正以45度向下斜入射到海底;b:经过海底反射,声波仍然保持一束,以45度向右上方传播;c:如果海底存在一个凸起的目标物体,声波经过目标的散射后,会分裂成两束,并向两个不同的方向扩散;d:给目标物体覆盖一层隐身毯,此时声波又合成一束,并且向右上方45o传播,传播状态与b图接近。

  

  (gif动图演示)拟态海底的隐身毯

  很明显,目标物体“披上”隐身毯后,就会拟态成一块平面,在探测声纳看来,眼前就是一般的海底,没有异常情况。再多的“声纳眼线”都无法区分拟态海底与真实海底的差别,所以这种隐身毯可以制造“幻象”,躲过多个声纳的探测。

  2.球形隐身衣

  有朋友强烈表示要把小鱼变透明,我们也有办法!

  

  球形隐身衣

  这是球形隐身衣的剖面图。图中间有一个小圆球,它就是我们要隐藏的目标物。外面的大球为隐身衣所覆盖的区域。两个球体之间的黑线,就是声波/光波在隐身衣中的传播路径。

  当声波/光波进入大球(隐身衣内部)以后,波的传播路径就开始逐渐发生弯曲,绕过中间的小球之后又逐渐回到原本的方向上来。波完全不会进入到中间的小球区域,就相当于我们在声场/电磁场中开辟了一块没有声波/电磁波的空间,所以中间的小球就被隔离出来,也就没法被探测到。

  3.环形隐身衣

  基于上述原理,北京理工大学胡更开教授的团队制作出了环形隐身衣(下图)。这种隐身衣能引导绝大多数声波能量偏离绕行,只有极少数声波进入隐藏区域,从而保证目标物体不被探测发现。

  

  环形隐身衣

  此外,这种环形隐身衣具有很高的对称性,无论声波从哪个方向传过来,都极难找到中间所隐藏的目标物体。这也就是我们之前提到的,可以对抗多个声纳阵列的新型隐身衣!

  目前,隐身技术是一门前沿、实用的科学,虽然现有的隐身衣并不像我们所想的那样轻便,但也不再是毫无根据的“空中楼阁”,而且隐身衣正朝着更薄、更轻、更宽工作频带的方向发展。

  遥想当年,隐身还是人类遥不可及的梦想,再看今天,梦想已逐渐变成了现实。人类对未来的畅想,真是推动科学进步的一股动力!

  参考文献:

  [1] CHEN Hongsheng, ZHENG Bin, SHEN Lian, WANG Huaping, ZHANG Xianmin, Nikolay I. Zheludev, ZHANG Baile. Ray-Optics Cloaking Devices for LARGE OBJECTS in Incoherent Natural Light[J]. Nature communications, 2013, 4: 2652.

  [2] LU Wenjia, JIA Han, BI Yafeng, YANG Yuzhen, YANG Jun. Design and Demonstration of an Acoustic Right-Angle Bend[J]. The Journal of the Acoustical Society of America, 2017, 142(1): 84-89.

  [3] BI Yafeng, JIA Han, LU Wenjia, JI Peifeng, YANG Jun. Design and Demonstration of an Underwater Acoustic Carpet Cloak[J]. Scientific Reports, 2017, 7(1):705.

  [4] CHEN Yi, ZHENG Mingye, LIU Xiaoning, BI Yafeng, SUN Zhaoyong, XIANG Ping, YANG Jun, HU Gengkai. Broadband Solid Cloak for Underwater Acoustics[J]. Physical Review B, 2017, 95(18): 180104


附件下载:

上一篇:

科普文章丨科学家抓住了地震中的“破坏大王”,还给它安排了新工作

下一篇:

科普文章丨汶川地震十周年纪念——捕捉地震中的次声波

新闻媒体
  • 新闻媒体
  • 人民网
  • 新华网
  • 光明网
  • 央视网
  • 中国科技网
  • 科学网
政府机构和组织
  • 政府机构和组织
  • 中国政府网
  • 科技部
  • 财政部
  • 工业和信息化部
  • 国家自然科学基金委
  • 国家发展改革委
  • 中国科协
国内院校
  • 国内院校
  • 中国科学院大学
  • 中国科学技术大学
  • 哈尔滨工程大学
  • 南京大学
国内科研机构
  • 国内科研机构
  • 中船重工
  • 地科院
  • 医科院
  • 铁科院
国际科研机构
  • 国际科研机构
  • 美国声学学会
  • Scripps海洋研究所
  • 哥本哈根大学
  • 勒芒大学
旧版回顾 | 网站地图 | 联系我们
© 1996 - 2021 中国科学院声学研究所 版权所有备案序号:京ICP备16057196号-1
京公网安备110402500001号地址:北京市海淀区北四环西路21号中国科学院声学研究所
邮编:100190
官方微信