科研成果
  概况介绍  
  获奖  
  论文  
  学术报告  
  专著  
  专利  
您现在的位置:首页 > 科研成果 > 论文
论文题目  基于有序统计和自动删除平均的恒虚警检测器 
论文题目(英文) CFAR detector based on ordered statistics and automatic censoring cell averaging  
作者 郝程鹏 
发表年度 2008 
30 
1 
页码 10-13 
期刊名称 系统工程与电子技术 
摘要 为了增强检测器对干扰的鲁棒性 ,基于有序统计(OS)方法和自动删除单元平均(ACCA)方法提出一种新的恒虚警检测器(MOSAC) ,其前沿和后沿滑窗分别采用 OS和 ACCA 产生两个局部估计 ,然后取二者的和作为背景功率水平估计 ,从而设置自适应检测门限。在 Swerling II型目标假设下 ,推导出 MOSAC在均匀背景下虚警概率 Pf a 的解析表达式 ,并与其它现有方案进行了比较。仿真结果表明 MOSAC在均匀背景及多目标和杂波边缘引起的非均匀背景中 ,均具有较好的检测性能。在杂波边缘引起的非均匀背景中 ,虚警尖峰比 MOSCM 减少了一个数量级 ,并且样本排序时间只有 OS和 ACCA 的 1/ 2。
关键词: 恒虚警; 有序统计; 自动删除单元平均; 排序数据方差 
摘要_英文 In order to make the detector perform robustly against interfere background , a new CFAR detector (MOSAC2CFAR) based on ordered statistics (OS) and automatic censoring cell averaging (ACCA) is proposed. It takes the sum of OS and ACCA local estimation as a noise power estimation. Under Swerling II assumption , the analytic expression of Pf a in homogeneous background is derived. By comparison with other schemes , the simulation result s show that the detection performance of MOSAC is good both in homogeneous environment and in nonhomogeneous environment caused by st rong interfering target s and clut ter edges , particularly in clut ter edges situation , the spike of false alarm rate of MOSAC decreases an order of magnitude than
that of MOSCM , while the sample sorting time is only half that of OS and ACCA.
Keywords :const fal se alarm rate ; ordered statistics ; automatic censoring cell averaging ; ordered data variability